俄罗斯芯片微电子发展史


一、导语
2016年8月,俄罗斯总理梅德韦杰夫对俄罗斯当前微电子产业的领先公司JSC Angstrem进行调研,Angstrem目前已经拥有了90纳米的技术和生产,未来俄罗斯的任务是要向新的微电子技术迈进,生产28或是14-16纳米的微电子产品。
世界半导体产业西风东渐,俄罗斯岿然不动。眼见得全球半导体产业乱纷纷,战斗民族却正在城楼观山景。
下面就让笔者带你去了解一下俄罗斯的微电子产业的发展情况。
二、前苏联的计算机产业发展
前苏联和美国是世界上仅有的两个完全依靠本国技术发展电子信息产业的国家。前苏联的电子技术水平确实与美国相当,可惜的是,电子技术水平不等于电子工业水平,所以前苏联的电子工业水平还是远远落后于欧美。
一个国家的微电子产业水平可以通过其计算机水平来体现。下面我们就先了解前苏联的计算机水平。
二战结束后,前苏联意识到计算机技术的重要性,由于在冷战时期遭受到巴黎统筹委员会(Coordinating Committee for Export to Communist Countries,缩写为CoCom)禁运,前苏联一直致力于研究、生产从半导体器件,到集成电路芯片,乃至计算机整机一整套产品。
前苏联的计算机产业思路是做自己的技术标准,走自己的路,所以前苏联计算机产业比较完善,整体技术实力非常强。
以下多款产品可以说明前苏联的计算机水平。
1969年研发成功的小型计算机Mir-2,被认为是第一台个人电脑(图片源于网络)

1984年上市的Agate-4电脑,足以媲美同时期的AppleII(图片源于网络)

1991年推出首台笔记本电脑MS 1504,比世界第一台量产的笔记本电脑T1100晚6年(图片源于网络)
说到前苏联的计算机,不得不提到厄尔布鲁士(Elbrus)系列计算机。Elbrus是前苏联的第四代计算机,具有2个核,由Vsevolod Burtsev带领团队于1973年完成,1986年停产;Elbrus-1完成于1978年,是全球首台使用超标量CPU的计算机;Elbrus-2完成于1984年,是前苏联的第一代超级计算机,具有10个核心;Elbrus-3是由Boris Babaian带领团队于1986年开发完成的具有16个核的计算机,是前苏联第一台采用VLIW体系结构的计算机。

2012年11月在纪念SPARC25周年大会上,SPARC原始团队成员Steven Muchnick捐赠的Elbrus-2 CPU板(图片源于网络)
有人说,前苏联在计算机领域最大的贡献是三进制,三进制是效率最高的表示数的方式,三进制很容易实现负数。它为计算机的模糊运算和自主学习提供了可能。在20世纪50、60年代,一批莫斯科国立大学的研究员就设计了人类历史上第一批三进制计算机“Сетунь”和“Сетунь 70”。但可惜的是,三进制没有流行开来。(请大拿给以解惑?)
三、前苏联在微处理器领域优势明显
俄罗斯的微电子产业发展可以追溯到前苏联时期。前苏联的微电子工业主要集中在今天的俄罗斯和白俄罗斯地区。
前苏联的专家们的基础知识非常扎实,前苏联缺失的是当年大力发展军事科技而忽视把科技民用化。由于50、60年代正值冷战时期,前苏联和美国展开了太空竞赛,前苏联在空间领域投入了大量的人力、物力和精力,从而忽视了科技了民用化。
现在提起俄罗斯的微电子产业,大家都会想到JSC Mikron、JSC Angstrem、MCST等,事实上这三家以及白俄罗斯的JSC Integral都是在20世纪50、60年代前苏联创立的半导体企业。
评判微电子水平的高低,可以通过其国家的CPU水平来窥视一二。
首款苏维埃CPU--587
前苏联的CPU发展始于20世纪70年代。当时位于莫斯科附近的Zelenograd的特殊计算机中心(Special Computing Center,缩写SCC)以D.I. Yuditsky为首的团队在1973年推出了前苏联的第一个16位小型机,其CPU是使用的是4位的587 CPU,被称为第一款苏维埃CPU,其架构被称为Elektronika NC。该款CPU及其后续产品被广泛应用于各种控制系统和电信设备。1976年特殊计算机中心(SCC)宣布解散,其所有的设备和技术转入Angstrem。遗憾是没有找到这款芯片的照片。
Elektronika NC架构
Elektronika NC是前苏联的第一代CPU架构,是属于位片式体系,导致CPU面积偏大,终端产品点笨拙。最后一款基于该架构的CPU是K1801VE1,属于1801 CPU系列。K1801VE1采用NMOS 10m工艺,具有256个字节片的RAM,2K ROM和其他外围电路,采用的陶瓷平面封装形式(综合DIP和SOIC方式),具有42个引脚。
1801系列CPU
1801 CPU系列共推出七款,除第一款采用Elektronika NC架构,其余6款都是采用LSI-11架构。第一款采用LSI-11架构的1801系列CPU是1982年推出的K1801VM1,采用NMOS工艺,裸片面积是25mm2,晶体管数量达到50000个,采用的陶瓷平面封装形式。下图是K1801VM1的Die照片和芯片照片。


最后一款1801系列CPU是K1801VM4,采用NMOS工艺,晶体管数量超过10万个,有两种封装方式,一是QFP,一是塑料平面封装,引脚数都是64个。


1806系列CPU
1806系列和1801系列是工艺不同,1801系列是采用NMOS工艺,而1806系列采用CMOS工艺。根据手头资料,两个系列的CPU除了时钟频率有差异外,功能几乎等同。该系列CPU在1988年11月发射的暴风雪号航天飞机上得到应用。
1836系列CPU
1836系列CPU是由Fizika公司生产,是做为1801系列的第二供应商,除了时钟频率有差异外,功能几乎等同。
Elbrus系列CPU是Pentium CPU的前身?
前方介绍的Elbrus计算机都是采用Elbrus CPU,Elbrus-1 CPU是世界上第一个标量CPU,完成于1977年;Elbrus系列完成人中有两个大牛人,一个是Boris Babaian,一个是Vladimir Pentkovski。1991年底,由于前苏联在政治体制和经济体系上发生了巨大的转变,研究项目的经费丧失了来源,导致这两大牛人的分开。Boris Babaian在莫斯科SPARC技术中心(MCST)与美国SUN公司合作,致力SPARC架构CPU研究,结果直接造成了SUN的崛起;Vladimir Pentkovski加盟美国INTEL,成为首席CPU设计师,打造了奔腾时代,铸就了INTEL的辉煌。
1986年,前苏联开始32位El-90微处理器研制工作,Vladimir Pentkovski是项目负责人,根据资料表示,El-90微处理器研究项目的技术报告于1987年完成,第一个原型于1990年成功问世。1990年,前苏联开始进行El-91S微处理器的研制工作,Vladimir Pentkovski再度领军。
Vladimir Pentkovski领军开发的El-90微处理器具有几大特征:一是晶体管数量超过50万个;二是每一个时钟周期可以执行两条指令的超标量体系结构;三是支持十路多重处理;四是支持排错;五是具有支线推算;六是具有高性能的管线浮点单元。我们可以把这六大特点与INTEL的奔腾系列进行对比,恰恰是奔腾系列的特色。
更具代表性的特点是Elbrus-1中复杂的El-76指令必须被特殊单元转换成简单的微运算指令,而在El-90微处理器中已经可以轻松转换。而Pentium微处理器恰恰拥有一个特殊单元,可以把复杂的x86转换成类似RISC的简单指令。
综上所述,前苏联在微处理器领域优势明显。
四、俄罗斯:大力发展微电子,重现CPU明日帝国
前苏联解体,俄罗斯独立,由于经济衰退,研究经费难以为继。但俄罗斯MCST的研究人员还是在SPARC系列CPU中取得了突破,1998年发布了R80 CPU。
2000年3月普京上台,同年6月批准了《国家信息安全学说》。这是俄罗斯第一部正式颁布的有关国家信息安全方面的重要文件,它将为俄“构筑未来国家信息政策大厦”奠定基础,为对抗外国向俄罗斯政治、经济、军事等领域的信息情报渗透起到指导作用。《国家信息安全学说》提出重点开发的“关键技术”包括:高性能计算机技术、智能化技术、信息攻击与防护技术以及相关的软件技术等。
在《国家信息安全学说》的指导和推动下,俄罗斯的微电子产业得到了长足发展。
晶圆制造
制造工艺水平取得突破,晶圆从6寸推进到8寸,线宽从1.0-0.5m推进到了90nm、65nm水平;2015年在法国研究机构和IBM的支持下,建立了全球首座12寸MRAM BEOL代工制造厂。
设计
多家公司CPU已经完成28nm工艺设计,并取得流片成功;多家DSP芯片也在40nm工艺完成流片。
重现CPU辉煌
MCST
莫斯科SPARC技术中心(MCST)成立于1992年,其前身是列别捷夫精密机械与计算技术研究所,公司在SPARC和Elbrus-2000架构方面都取得了不俗的成绩。该中心的领军人物就是Boris Babaian,他曾是前苏联第一代超级计算机Elbrus-2的团队负责人,也是Vladimir Pentkovski的曾经上司。
在SPARC系列方面,2007年推出R500S,主频为500MHz,采用台积电0.13m制造工艺;2010年推出R1000,主频为1000MHz,采用台积电90nm制造工艺。
2011年,研制出“Elbrus-2S+”2核64位CPU,主频为500MHz,采用台积电90nm制造工艺;2014年4月开发出“Elbrus-4S”4核64位CPU,主频为800MHz,采用台积电65nm制造工艺;2015年开发出“Elbrus-8S”8核64位CPU,主频为1.3GHz,采用台积电28nm制造工艺,平均功率40瓦特;目前正在研发“Elbrus-16S”64位CPU,预计2018年流片,主频预计超过3GHz。
Boris Babaian表示,MCST已经从俄罗斯联邦政府、莫斯科市政府和其它途径得到了稳定的财政支援,并得到了国防订单,Elbrus-2000架构的CPU将会给INTEL以迎头痛击。
Baikal Electronics

Baikal Electronics是一家为计算机系统和工业应用开发具有不同性能和功能级别的高能效的处理器和SoC芯片,公司目前推出Baikal-T1和Baikal-M系列。
2015年5月Baikal Electronics宣布发布了其首款商用微处理器Baikal-T1,2016年2月该处理器正式量产。Baikal-TI是俄罗斯第一颗来采用了MIPS Warrior系列 CPU的通信处理器,在性能、技术节点和兼容性方面具有强大的竞争力。核心是一颗时钟频率为1.2GHz的双核 MIPS P5600 CPU,拥有2个超标量体系结构的32-bit CPU核心,2级缓存2MB,主频为1.2GHz,内有DDR3内存控制器,最高支持DDR3-1600,提供了4条PCI-E 3.0通道、2个SATA 6Gbps接口和USB 2.0接口、1个千兆和1个万兆网线接口,功耗不到5W。采用台积电28nm工艺生产,封装尺寸为25*25mm。
Baikal-M是采用ARM内核,根据资料显示,内部是8个ARMv8-A CPU,另配有8个ARM Mali-T628 GPU。预估2017年中完成,主频将达2GHz。
五、结语
为发展本国微电子产品,俄罗斯制定和实施了《2013-2025年前电子和广播电子工业发展规划》、《国防工业综合体发展规划》以及联合国家科技规划等几个联邦级产业发展战略。在这些产业发展战略中,对微电子产业给予了大力的财政支持,优先支持的子项目包括电信设备、计算机设备、特殊技术设备、智能控制体系。国家在2013-2025年期间计划为优先支持的子项目下拨预算总额达到1700亿卢布,这意味着每年的财政拨款数额将约为150亿卢布。
尽管当前俄罗斯经济遭遇困境,但俄政府为保证微电子产业的发展、扩大国内市场需求、提升出口能力等方面做了很多的努力。2016年5月,国家批准了俄罗斯民用微电子产品中期(2016年至2018年)政府采购保障计划,到2018年底,在预算资金保障执行的情况下,政府保障采购超过1000万个微电子产品,政府采购总金额达到750亿卢布。
2016年9月Angstrem开始向印度出口一种新的宇航级抗辐射芯片,这对依赖进口的俄罗斯微电子市场来说是个不错的开头。
俄罗斯在“Elbrus-2000”、SPARC、MIPS三大架构CPU全线发力,SPARC面向军方市场;MIPS立足通信、视频市场;“Elbrus-2000”更是剑指INTEL。
战斗民族的血性将对俄罗斯的微电子产业发展带来更多期待。
其他信息:
芯片介绍
晶体管发明并大量生产之后,各式固态半导体组件如二极管、晶体管等大量使用,取代了真空管在电路中的功能与角色。到了20世纪中后期半导体制造技术进步,使得集成电路成为可能。相对于手工组装电路使用个别的分立电子组件,集成电路可以把很大数量的微晶体管集成到一个小芯片,是一个巨大的进步。集成电路的规模生产能力,可靠性,电路设计的模块化方法确保了快速采用标准化集成电路代替了设计使用离散晶体管。
集成电路对于离散晶体管有两个主要优势:成本和性能。成本低是由于芯片把所有的组件通过照相平版技术,作为一个单位印刷,而不是在一个时间只制作一个晶体管。性能高是由于组件快速开关,消耗更低能量,因为组件很小且彼此靠近。2006年,芯片面积从几平方毫米到350 mm²,每mm²可以达到一百万个晶体管。
第一个集成电路雏形是由杰克·基尔比于1958年完成的,其中包括一个双极性晶体管,三个电阻和一个电容器。
根据一个芯片上集成的微电子器件的数量,集成电路可以分为以下几类:
·        小型集成电路(SSI英文全名为Small Scale Integration)逻辑门10个以下或晶体管100个以下。
·        中型集成电路(MSI英文全名为Medium Scale Integration)逻辑门11~100个或 晶体管101~1k个。
·        大规模集成电路(LSI英文全名为Large Scale Integration)逻辑门101~1k个或 晶体管1,001~10k个。
·        超大规模集成电路(VLSI英文全名为Very large scale integration)逻辑门1,001~10k个或晶体管10,001~100k个。
·        极大规模集成电路(ULSI英文全名为Ultra Large Scale Integration)逻辑门10,001~1M个或晶体管100,001~10M个。
·        GLSI(英文全名为Giga Scale Integration)逻辑门1,000,001个以上或晶体管10,000,001个以上。
芯片集成电路的发展
最先进的集成电路是微处理器或多核处理器的核心,可以控制计算机到手机到数字微波炉的一切。虽然设计开发一个复杂集成电路的成本非常高,但是当分散到通常以百万计的产品上,每个集成电路的成本最小化。集成电路的性能很高,因为小尺寸带来短路径,使得低功率逻辑电路可以在快速开关速度应用。
这些年来,集成电路持续向更小的外型尺寸发展,使得每个芯片可以封装更多的电路。这样增加了每单位面积容量,可以降低成本和增加功能,见摩尔定律,集成电路中的晶体管数量,每1.5年增加一倍。总之,随着外形尺寸缩小,几乎所有的指标改善了,单位成本和开关功率消耗下降,速度提高。但是,集成纳米级别设备的IC也存在问题,主要是泄漏电流。因此,对于最终用户的速度和功率消耗增加非常明显,制造商面临使用更好几何学的尖锐挑战。这个过程和在未来几年所期望的进步,在半导体国际技术路线图中有很好的描述。
仅仅在其开发后半个世纪,集成电路变得无处不在,计算机、手机和其他数字电器成为社会结构不可缺少的一部分。这是因为,现代计算、交流、制造和交通系统,包括互联网,全都依赖于集成电路的存在。甚至很多学者认为有集成电路带来的数字革命是人类历史中最重要的事件。IC的成熟将会带来科技的大跃进,不论是在设计的技术上,或是半导体的工艺突破,两者都是息息相关。
芯片分类
 
集成电路的分类方法很多,依照电路属模拟或数字,可以分为:模拟集成电路、数字集成电路和混合信号集成电路(模拟和数字在一个芯片上)。
数字集成电路可以包含任何东西,在几平方毫米上有从几千到百万的逻辑门、触发器、多任务器和其他电路。这些电路的小尺寸使得与板级集成相比,有更高速度,更低功耗(参见低功耗设计)并降低了制造成本。这些数字IC,以微处理器、数字信号处理器和微控制器为代表,工作中使用二进制,处理1和0信号。
模拟集成电路有,例如传感器、电源控制电路和运放,处理模拟信号。完成放大、滤波、解调、混频的功能等。通过使用专家所设计、具有良好特性的模拟集成电路,减轻了电路设计师的重担,不需凡事再由基础的一个个晶体管处设计起。
集成电路可以把模拟和数字电路集成在一个单芯片上,以做出如模拟数字转换器和数字模拟转换器等器件。这种电路提供更小的尺寸和更低的成本,但是对于信号冲突必须小心。
芯片制造
参见:半导体器件制造和集成电路设计
从20世纪30年代开始,元素周期表中的化学元素中的半导体被研究者如贝尔实验室的威廉·肖克利(William Shockley)认为是固态真空管的最可能的原料。从氧化铜到锗,再到硅,原料在20世纪40到50年代被系统的研究。尽管元素周期表的一些III-V价化合物如砷化镓应用于特殊用途如:发光二极管、激光、太阳能电池和最高速集成电路,单晶硅成为集成电路主流的基层。创造无缺陷晶体的方法用去了数十年的时间。
半导体集成电路工艺,包括以下步骤,并重复使用:
·        光刻
·        刻蚀
·        薄膜(化学气相沉积或物理气相沉积)
·        掺杂(热扩散或离子注入)
·        化学机械平坦化CMP
使用单晶硅晶圆(或III-V族,如砷化镓)用作基层,然后使用光刻、掺杂、CMP等技术制成MOSFET或BJT等组件,再利用薄膜和CMP技术制成导线,如此便完成芯片制作。因产品性能需求及成本考量,导线可分为铝工艺(以溅镀为主)和铜工艺(以电镀为主参见Damascene)。主要的工艺技术可以分为以下几大类:黄光微影、刻蚀、扩散、薄膜、平坦化制成、金属化制成。
IC由很多重叠的层组成,每层由视频技术定义,通常用不同的颜色表示。一些层标明在哪里不同的掺杂剂扩散进基层(成为扩散层),一些定义哪里额外的离子灌输(灌输层),一些定义导体(多晶硅或金属层),一些定义传导层之间的连接(过孔或接触层)。所有的组件由这些层的特定组合构成。
·        在一个自排列(CMOS)过程中,所有门层(多晶硅或金属)穿过扩散层的地方形成晶体管。
·        电阻结构,电阻结构的长宽比,结合表面电阻系数,决定电阻。
·        电容结构,由于尺寸限制,在IC上只能产生很小的电容。
·        更为少见的电感结构,可以制作芯片载电感或由回旋器模拟。
因为CMOS设备只引导电流在逻辑门之间转换,CMOS设备比双极型组件(如双极性晶体管)消耗的电流少很多。透过电路的设计,将多颗的晶体管管画在硅晶圆上,就可以画出不同作用的集成电路。
随机存取存储器是最常见类型的集成电路,所以密度最高的设备是存储器,但即使是微处理器上也有存储器。尽管结构非常复杂-几十年来芯片宽度一直减少-但集成电路的层依然比宽度薄很多。组件层的制作非常像照相过程。虽然可见光谱中的光波不能用来曝光组件层,因为他们太大了。高频光子(通常是紫外线)被用来创造每层的图案。因为每个特征都非常小,对于一个正在调试制造过程的过程工程师来说,电子显微镜是必要工具。
在使用自动测试设备(ATE)包装前,每个设备都要进行测试。测试过程称为晶圆测试或晶圆探通。晶圆被切割成矩形块,每个被称为晶片(“die”)。每个好的die被焊在“pads”上的铝线或金线,连接到封装内,pads通常在die的边上。封装之后,设备在晶圆探通中使用的相同或相似的ATE上进行终检。测试成本可以达到低成本 产品的制造成本的25%,但是对于低产出,大型和/或高成本的设备,可以忽略不计。
在2005年,一个制造厂(通常称为半导体工厂,常简称fab,指fabrication facility)建设费用要超过10亿美元,因为大部分操作是自动化的。
制造过程
芯片制作完整过程包括芯片设计、晶片制作、封装制作、测试等几个环节,其中晶片制作过程尤为的复杂。
首先是芯片设计,根据设计的需求,生成的“图样”
芯片的原料晶圆
晶圆的成分是硅,硅是由石英沙所精练出来的,晶圆便是硅元素加以纯化(99.999%),接着是将这些纯硅制成硅晶棒,成为制造集成电路的石英半导体的材料,将其切片就是芯片制作具体所需要的晶圆。晶圆越薄,生产的成本越低,但对工艺就要求的越高。
晶圆涂膜
晶圆涂膜能抵抗氧化以及耐温能力,其材料为光阻的一种。
晶圆光刻显影、蚀刻
光刻工艺的基本流程如图1  所示。首先是在晶圆(或衬底)表面涂上一层光刻胶并烘干。烘干后的晶圆被传送到光刻机里面。光线透过一个掩模把掩模上的图形投影在晶圆表面的光刻胶上,实现曝光,激发光化学反应。对曝光后的晶圆进行第二次烘烤,即所谓的曝光后烘烤,后烘烤使得光化学反应更充分。最后,把显影液喷洒到晶圆表面的光刻胶上,对曝光图形显影。显影后,掩模上的图形就被存留在了光刻胶上。涂胶、烘烤和显影都是在匀胶显影机中完成的,曝光是在光刻机中完成的。匀胶显影机和光刻机一般都是联机作业的,晶圆通过机械手在各单元和机器之间传送。整个曝光显影系统是封闭的,晶圆不直接暴露在周围环境中,以减少环境中有害成分对光刻胶和光化学反应的影响 。
图1:现代光刻工艺的基本流程和光刻后的检测步骤
该过程使用了对紫外光敏感的化学物质,即遇紫外光则变软。通过控制遮光物的位置可以得到芯片的外形。在硅晶片涂上光致抗蚀剂,使得其遇紫外光就会溶解。这时可以用上第一份遮光物,使得紫外光直射的部分被溶解,这溶解部分接着可用溶剂将其冲走。这样剩下的部分就与遮光物的形状一样了,而这效果正是我们所要的。这样就得到我们所需要的二氧化硅层。
掺加杂质
将晶圆中植入离子,生成相应的P、N类半导体。
具体工艺是是从硅片上暴露的区域开始,放入化学离子混合液中。这一工艺将改变搀杂区的导电方式,使每个晶体管可以通、断、或携带数据。简单的芯片可以只用一层,但复杂的芯片通常有很多层,这时候将该流程不断的重复,不同层可通过开启窗口联接起来。这一点类似多层PCB板的制作原理。更为复杂的芯片可能需要多个二氧化硅层,这时候通过重复光刻以及上面流程来实现,形成一个立体的结构。
晶圆测试
经过上面的几道工艺之后,晶圆上就形成了一个个格状的晶粒。通过针测的方式对每个晶粒进行电气特性检测。一般每个芯片的拥有的晶粒数量是庞大的,组织一次针测试模式是非常复杂的过程,这要求了在生产的时候尽量是同等芯片规格构造的型号的大批量的生产。数量越大相对成本就会越低,这也是为什么主流芯片器件造价低的一个因素。
封装
将制造完成晶圆固定,绑定引脚,按照需求去制作成各种不同的封装形式,这就是同种芯片内核可以有不同的封装形式的原因。比如:DIP、QFP、PLCC、QFN等等。这里主要是由用户的应用习惯、应用环境、市场形式等外围因素来决定的。
测试、包装
经过上述工艺流程以后,芯片制作就已经全部完成了,这一步骤是将芯片进行测试、剔除不良品,以及包装。
芯片型号
芯片命名方式一般都是:字母+数字+字母
前面的字母是芯片厂商或是某个芯片系列的缩写。像MC开始的多半是摩托罗拉的,MAX开始的多半是美信的。
中间的数字是功能型号。像MC7805和LM7805,从7805上可以看出它们的功能都是输出5V,只是厂家不一样。
后面的字母多半是封装信息,要看厂商提供的资料才能知道具体字母代表什么封装。
74系列是标准的TTL逻辑器件的通用名称,例如74LS00、74LS02等等,单从74来看看不出是什么公司的产品。不同公司会在74前面加前缀,例如SN74LS00等。
芯片相关拓展
一个完整的IC型号一般都至少必须包含以下四个部分:
前缀(首标)-----很多可以推测是哪家公司产品。
器件名称----一般可以推断产品的功能(memory可以得知其容量)。
温度等级-----区分商业级,工业级,军级等。一般情况下,C表示民用级,Ⅰ表示工业级,E表示扩展工业级,A表示航空级,M表示军品级。
封装----指出产品的封装和管脚数有些IC型号还会有其它内容:
速率----如memory,MCU,DSP,FPGA 等产品都有速率区别,如-5,-6之类数字表示。
工艺结构----如通用数字IC有COMS和TL两种,常用字母C,T来表示。
是否环保-----一般在型号的末尾会有一个字母来表示是否环保,如z,R,+等。
包装-----显示该物料是以何种包装运输的,如tube,T/R,rail,tray等。
版本号----显示该产品修改的次数,一般以M为第一版本。
芯片IC命名、封装常识与命名规则:
温度范围:
C=0℃至60℃(商业级);I=-20℃至85℃(工业级);E=-40℃至85℃(扩展工业级);A=-40℃至82℃(航空级);M=-55℃至125℃(军品级)
封装类型:
A—SSOP;B—CERQUAD;C-TO-200,TQFP﹔D—陶瓷铜顶;E—QSOP;F—陶瓷SOP;H—SBGAJ-陶瓷DIP;K—TO-3;L—LCC,M—MQFP;N——窄DIP﹔N—DIP;;Q—PLCC;R一窄陶瓷DIP (300mil);S—TO-52,T—TO5,TO-99,TO-100﹔U—TSSOP,uMAX,SOT;W—宽体小外型(300mil)﹔ X—SC-60(3P,5P,6P)﹔ Y―窄体铜顶;Z—TO-92,MQUAD;D—裸片;/PR-增强型塑封﹔/W-晶圆。
管脚数:
A—8;B—10﹔C—12,192;D—14;E—16;F——22,256;G—4;H—4;I—28 ;J—2;K—5,68;L—40;M—6,48;N—18;O—42;P—20﹔Q—2,100﹔R—3,843;S——4,80;T—6,160;U—60;V—8(圆形)﹔ W—10(圆形)﹔X—36;Y—8(圆形)﹔Z—10(圆形)。
注:接口类产品四个字母后缀的第一个字母是E,则表示该器件具备抗静电功能
芯片封装技术的发展
 
最早的集成电路使用陶瓷扁平封装,这种封装很多年来因为可靠性和小尺寸继续被军方使用。商用电路封装很快转变到双列直插封装,开始是陶瓷,之后是塑料。20世纪80年代,VLSI电路的针脚超过了DIP封装的应用限制,最后导致插针网格数组和芯片载体的出现。
表面贴着封装在20世纪80年代初期出现,该年代后期开始流行。它使用更细的脚间距,引脚形状为海鸥翼型或J型。以Small-Outline Integrated Circuit(SOIC)为例,比相等的DIP面积少30-50%,厚度少70%。这种封装在两个长边有海鸥翼型引脚突出,引脚间距为0.05英寸。
Small-Outline Integrated Circuit(SOIC)和PLCC封装。20世纪90年代,尽管PGA封装依然经常用于高端微处理器。PQFP和thin small-outline package(TSOP)成为高引脚数设备的通常封装。Intel和AMD的高端微处理从PGA(PineGrid Array)封装转到了平面网格阵列封装(Land Grid Array,LGA)封装。
球栅数组封装封装从20世纪70年代开始出现,90年代开发了比其他封装有更多管脚数的覆晶球栅数组封装封装。在FCBGA封装中,晶片(die)被上下翻转(flipped)安装,通过与PCB相似的基层而不是线与封装上的焊球连接。FCBGA封装使得输入输出信号阵列(称为I/O区域)分布在整个芯片的表面,而不是限制于芯片的外围。如今的市场,封装也已经是独立出来的一环,封装的技术也会影响到产品的质量及良率。
长按或者扫码二维码
可获取更多精彩内容
芯片讲坛

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。
到顶部